OR-Notes OR-Notes son una serie de notas introductorias sobre temas que se encuentran bajo el amplio encabezamiento del campo de investigación de operaciones (OR). Originalmente fueron utilizados por mí en un curso introductorio de OR que doy en el Imperial College. Ahora están disponibles para su uso por cualquier estudiante y maestro interesado en OR sujeto a las siguientes condiciones. Puede encontrar una lista completa de los temas disponibles en OR-Notes aquí. Ejemplos de pronóstico Ejemplo de pronóstico 1996 Examen UG La demanda de un producto en cada uno de los últimos cinco meses se muestra a continuación. Utilice una media móvil de dos meses para generar una previsión de demanda en el mes 6. Aplique el suavizado exponencial con una constante de suavizado de 0.9 para generar una previsión de demanda de demanda en el mes 6. ¿Cuál de estos dos pronósticos prefiere y por qué? El promedio móvil para los meses dos a cinco es dado por: El pronóstico para el mes seis es sólo el promedio móvil para el mes antes de que es decir, el promedio móvil para el mes 5 m 5 2350. Aplicando suavizado exponencial con una constante de suavizado de 0,9 obtenemos: Antes de que el pronóstico para el mes seis sea apenas el promedio para el mes 5 M 5 2386 Para comparar los dos pronósticos calculamos la desviación cuadrada media (MSD). Si hacemos esto, encontramos que para el promedio móvil MSD (15 - 19) sup2 (18 - 23) sup2 (21-24) sup2 / 3 16.67 y para el promedio exponencialmente suavizado con una constante de suavización de 0.9 MSD (13-17) ) Sup2 (18.76 - 23) sup2 (22.58 - 24) sup2 / 4 10.44 En general, vemos que el suavizado exponencial parece dar las mejores previsiones de un mes de anticipación ya que tiene un MSD más bajo. Por lo tanto, preferimos el pronóstico de 2386 que ha sido producido por suavizado exponencial. Ejemplo de pronóstico 1994 UG examen La siguiente tabla muestra la demanda de un nuevo aftershave en una tienda para cada uno de los últimos 7 meses. Calcular una media móvil de dos meses para los meses dos a siete. ¿Cuál sería su pronóstico para la demanda en el mes ocho? Aplicar el suavizado exponencial con una constante de suavizado de 0,1 para obtener una previsión de la demanda en el mes ocho. ¿Cuál de las dos previsiones para el mes ocho prefieres y por qué? El encargado de la tienda cree que los clientes están cambiando a este nuevo aftershave de otras marcas. Analice cómo puede modelar este comportamiento de conmutación e indicar los datos que necesitaría para confirmar si se está produciendo o no esta conmutación. Solución El promedio móvil de dos meses para los meses dos a siete es dado por: El pronóstico para el mes ocho es sólo la media móvil para el mes anterior que es decir, el promedio móvil para el mes 7 m 7 46. Aplicando suavizado exponencial con una constante de suavizado de 0,1 Obtenemos: Como antes de la previsión para el mes ocho es sólo el promedio para el mes 7 M 7 31,11 31 (como no podemos tener la demanda fraccional). Para comparar los dos pronósticos se calcula la desviación cuadrática media (MSD). Si hacemos esto encontramos que para el promedio móvil y para el promedio exponencialmente suavizado con una constante de suavizado de 0,1 En general, vemos que el promedio móvil de dos meses parece dar el mejor pronóstico de un mes de anticipación, ya que tiene un MSD más bajo. Por lo tanto, preferimos la previsión de 46 que se ha producido por la media móvil de dos meses. Para examinar la conmutación que tendría que utilizar un modelo de proceso de Markov, donde las marcas de estados y que se necesita información de estado inicial y las probabilidades de conmutación de clientes (a partir de encuestas). Necesitamos ejecutar el modelo en datos históricos para ver si tenemos un ajuste entre el modelo y el comportamiento histórico. Ejemplo de pronóstico 1992 UG examen La siguiente tabla muestra la demanda de una determinada marca de afeitar en una tienda para cada uno de los últimos nueve meses. Calcular una media móvil de tres meses para los meses tres a nueve. ¿Cuál sería su pronóstico para la demanda en el mes diez? Aplicar el suavizado exponencial con una constante de suavizado de 0,3 para obtener una previsión de la demanda en el mes diez. ¿Cuál de los dos pronósticos para el mes diez prefieres y por qué? Solución El promedio móvil de tres meses para los meses 3 a 9 es dado por: El pronóstico para el mes 10 es sólo el promedio móvil para el mes anterior que es decir el promedio móvil para el mes 9 M 9 20,33. Por lo tanto (como no podemos tener demanda fraccional) el pronóstico para el mes 10 es 20. Aplicando el suavizado exponencial con una constante de suavizado de 0.3 obtenemos: Como antes la predicción para el mes 10 es sólo el promedio para el mes 9 M 9 18.57 19 (como nosotros No puede tener demanda fraccional). Para comparar los dos pronósticos se calcula la desviación cuadrática media (MSD). Si hacemos esto, encontramos que para el promedio móvil y para el promedio exponencialmente suavizado con una constante de suavizado de 0,3 En general, vemos que el promedio móvil de tres meses parece dar el mejor pronóstico de un mes de anticipación, ya que tiene un MSD más bajo. Por lo tanto, preferimos la previsión de 20 que se ha producido por el promedio móvil de tres meses. Ejemplo de pronóstico 1991 UG examen La siguiente tabla muestra la demanda de una determinada marca de fax en un gran almacén en cada uno de los últimos doce meses. Calcular la media móvil de cuatro meses para los meses 4 a 12. ¿Cuál sería su pronóstico para la demanda en el mes 13 Aplicar suavizado exponencial con una constante de suavizado de 0,2 para obtener una previsión de la demanda en el mes 13. ¿Cuál de las dos previsiones para el mes 13 Prefiere y por qué ¿Qué otros factores, no considerados en los cálculos anteriores, pueden influir en la demanda del fax en el mes 13 Solución La media móvil de cuatro meses para los meses 4 a 12 está dada por: m 4 (23 19 15 12) / 4 17,25 m 5 (27 23 19 15) / 4 21 m 6 (30 27 23 19) / 4 24,75 m 7 (32 30 27 23) / 4 28 m 8 (33 32 30 27) / 4 30,5 m 9 ( 37 33 32 30) / 4 33 m 10 (41 37 33 32) / 4 35,75 m 11 (49 41 37 33) / 4 40 m 12 (58 49 41 37) / 4 46,25 El pronóstico para el mes 13 es sólo el movimiento Promedio para el mes anterior, es decir, el promedio móvil para el mes 12 m 12 46,25. Por lo tanto (como no podemos tener demanda fraccional) el pronóstico para el mes 13 es 46. Aplicando el suavizado exponencial con una constante de suavizado de 0.2 obtenemos: Como antes la previsión para el mes 13 es sólo el promedio para el mes 12 M 12 38.618 39 (como nosotros No puede tener demanda fraccional). Para comparar las dos previsiones se calcula la desviación cuadrática media (MSD). Si hacemos esto, encontramos que para el promedio móvil y para el promedio exponencialmente suavizado con una constante de suavizado de 0,2 En general, vemos que el promedio móvil de cuatro meses parece dar las mejores previsiones de un mes de anticipación, ya que tiene un MSD más bajo. Por lo tanto, preferimos la previsión de 46 que se ha producido por el promedio móvil de cuatro meses. La demanda estacional los cambios de precio de la publicidad, tanto esta marca y otras marcas situación económica general de la nueva tecnología Ejemplo de pronóstico 1989 UG examen La siguiente tabla muestra la demanda de una determinada marca de horno de microondas en un almacén en cada uno de los últimos doce meses. Calcular una media móvil de seis meses para cada mes. ¿Cuál sería su pronóstico para la demanda en el mes 13 Aplicar suavizado exponencial con una constante de suavizado de 0,7 para obtener una previsión de la demanda en el mes 13. ¿Cuál de las dos previsiones para el mes 13 prefieres y por qué? Solución Ahora no podemos calcular una Seis meses de media móvil hasta que tenemos por lo menos 6 observaciones - es decir, sólo podemos calcular un promedio desde el mes 6 en adelante. Por lo tanto, tenemos: m 6 (34 32 30 29 31 27) / 6 30,50 m 7 (36 34 32 30 29 31) / 6 32,00 m 8 (35 36 34 32 30 29) / 6 32,67 m 9 (37 35 36 34 32 30) / 6 34,00 m 10 (39 37 35 36 34 32) / 6 35,50 m 11 (40 39 37 35 36 34) / 6 36,83 m 12 (42 40 39 37 35 36) / 6 38,17 La previsión para el mes 13 Es sólo el promedio móvil para el mes anterior, es decir, el promedio móvil para el mes 12 m 12 38,17. Por lo tanto (como no podemos tener demanda fraccional) el pronóstico para el mes 13 es 38. Aplicando el suavizado exponencial con una constante de suavizado de 0,7 obtendremos: Modelos de media móvil y de suavizado exponencial Como primer paso para ir más allá de los modelos de media, aleatoria y Modelos de tendencias lineales, patrones no estacionales y tendencias pueden extrapolarse usando un modelo de media móvil o de suavizado. La suposición básica detrás de los modelos de promedio y suavizado es que la serie temporal es localmente estacionaria con una media que varía lentamente. Por lo tanto, tomamos un promedio móvil (local) para estimar el valor actual de la media y luego usarlo como pronóstico para el futuro cercano. Esto puede considerarse como un compromiso entre el modelo medio y el modelo aleatorio-paseo-sin-deriva. La misma estrategia se puede utilizar para estimar y extrapolar una tendencia local. Una media móvil se denomina a menudo una versión quotomoldeada de la serie original porque el promedio de corto plazo tiene el efecto de suavizar los golpes en la serie original. Al ajustar el grado de suavizado (el ancho de la media móvil), podemos esperar encontrar algún tipo de equilibrio óptimo entre el rendimiento de la media y los modelos de caminata aleatoria. El tipo más simple de modelo de promediación es el. Promedio móvil simple (igualmente ponderado): El pronóstico para el valor de Y en el tiempo t1 que se hace en el tiempo t es igual al promedio simple de las observaciones m más recientes: (Aquí y en otros lugares usaré el símbolo 8220Y-hat8221 para permanecer en pie Para un pronóstico de la serie de tiempo Y hecho a la fecha más temprana posible posible por un modelo dado). Este promedio se centra en el período t (m1) / 2, lo que implica que la estimación de la media local tiende a quedar rezagada detrás del Valor real de la media local de aproximadamente (m1) / 2 periodos. Por lo tanto, decimos que la edad media de los datos en el promedio móvil simple es (m1) / 2 en relación con el período para el cual se calcula el pronóstico: ésta es la cantidad de tiempo por el cual los pronósticos tienden a quedar rezagados datos. Por ejemplo, si está promediando los últimos 5 valores, las previsiones serán de aproximadamente 3 períodos tarde en la respuesta a los puntos de inflexión. Tenga en cuenta que si m1, el modelo de media móvil simple (SMA) es equivalente al modelo de caminata aleatoria (sin crecimiento). Si m es muy grande (comparable a la longitud del período de estimación), el modelo SMA es equivalente al modelo medio. Como con cualquier parámetro de un modelo de pronóstico, es habitual ajustar el valor de k para obtener el mejor valor de los datos, es decir, los errores de predicción más pequeños en promedio. He aquí un ejemplo de una serie que parece presentar fluctuaciones aleatorias alrededor de una media de variación lenta. En primer lugar, vamos a tratar de encajar con un modelo de caminata al azar, que es equivalente a una media móvil simple de un término: El modelo de caminata aleatoria responde muy rápidamente a los cambios en la serie, pero al hacerlo, recoge gran parte del quotnoisequot en el Los datos (las fluctuaciones aleatorias), así como el quotsignalquot (la media local). Si en lugar de eso intentamos una media móvil simple de 5 términos, obtendremos un conjunto de previsiones más suaves: El promedio móvil simple a 5 terminos produce errores significativamente menores que el modelo de caminata aleatoria en este caso. La edad promedio de los datos de esta previsión es de 3 ((51) / 2), de modo que tiende a quedar a la zaga de los puntos de inflexión en aproximadamente tres períodos. (Por ejemplo, parece haber ocurrido una recesión en el período 21, pero las previsiones no giran hasta varios periodos más tarde). Obsérvese que los pronósticos a largo plazo del modelo SMA son una línea recta horizontal, al igual que en la caminata aleatoria modelo. Por lo tanto, el modelo SMA asume que no hay tendencia en los datos. Sin embargo, mientras que las previsiones del modelo de caminata aleatoria son simplemente iguales al último valor observado, las previsiones del modelo SMA son iguales a un promedio ponderado de valores recientes. Los límites de confianza calculados por Statgraphics para los pronósticos a largo plazo de la media móvil simple no se amplían a medida que aumenta el horizonte de pronóstico. Esto obviamente no es correcto Desafortunadamente, no hay una teoría estadística subyacente que nos diga cómo los intervalos de confianza deberían ampliarse para este modelo. Sin embargo, no es demasiado difícil calcular estimaciones empíricas de los límites de confianza para las previsiones a más largo plazo. Por ejemplo, podría configurar una hoja de cálculo en la que el modelo SMA se utilizaría para pronosticar dos pasos adelante, tres pasos adelante, etc. dentro de la muestra de datos históricos. A continuación, podría calcular las desviaciones estándar de los errores en cada horizonte de pronóstico y, a continuación, construir intervalos de confianza para pronósticos a más largo plazo sumando y restando múltiplos de la desviación estándar apropiada. Si intentamos una media móvil sencilla de 9 términos, obtendremos pronósticos aún más suaves y más de un efecto rezagado: La edad promedio es ahora de 5 períodos ((91) / 2). Si tomamos una media móvil de 19 términos, la edad promedio aumenta a 10: Obsérvese que, de hecho, las previsiones están ahora rezagadas detrás de puntos de inflexión en aproximadamente 10 períodos. Qué cantidad de suavizado es la mejor para esta serie Aquí hay una tabla que compara sus estadísticas de error, incluyendo también un promedio de 3 términos: El modelo C, la media móvil de 5 términos, produce el valor más bajo de RMSE por un pequeño margen sobre los 3 A término y 9 promedios, y sus otras estadísticas son casi idénticas. Por lo tanto, entre los modelos con estadísticas de error muy similares, podemos elegir si preferiríamos un poco más de capacidad de respuesta o un poco más de suavidad en las previsiones. El modelo de media móvil simple descrito anteriormente tiene la propiedad indeseable de que trata las últimas k observaciones por igual e ignora por completo todas las observaciones precedentes. (Volver al principio de la página.) Browns Simple Exponential Smoothing Intuitivamente, los datos pasados deben ser descontados de una manera más gradual - por ejemplo, la observación más reciente debería tener un poco más de peso que la segunda más reciente, y la segunda más reciente debería tener un poco más de peso que la tercera más reciente, y pronto. El modelo de suavizado exponencial simple (SES) lo logra. Sea 945 una constante quotsmoothingquot (un número entre 0 y 1). Una forma de escribir el modelo es definir una serie L que represente el nivel actual (es decir, el valor medio local) de la serie, tal como se estimó a partir de los datos hasta el presente. El valor de L en el tiempo t se calcula recursivamente a partir de su propio valor anterior como este: Así, el valor suavizado actual es una interpolación entre el valor suavizado anterior y la observación actual, donde 945 controla la proximidad del valor interpolado al valor más reciente observación. El pronóstico para el siguiente período es simplemente el valor suavizado actual: Equivalentemente, podemos expresar el próximo pronóstico directamente en términos de previsiones anteriores y observaciones previas, en cualquiera de las siguientes versiones equivalentes. En la primera versión, la previsión es una interpolación entre la previsión anterior y la observación anterior: En la segunda versión, la siguiente previsión se obtiene ajustando la previsión anterior en la dirección del error anterior por una cantidad fraccionada de 945. es el error hecho en Tiempo t En la tercera versión, el pronóstico es una media móvil exponencialmente ponderada (es decir, descontada) con el factor de descuento 1-945: La versión de interpolación de la fórmula de pronóstico es la más simple de usar si está implementando el modelo en una hoja de cálculo: se ajusta en un Célula única y contiene referencias de celdas que apuntan a la previsión anterior, la observación anterior y la celda donde se almacena el valor de 945. Tenga en cuenta que si 945 1, el modelo SES es equivalente a un modelo de caminata aleatoria (sin crecimiento). Si 945 0, el modelo SES es equivalente al modelo medio, asumiendo que el primer valor suavizado se establece igual a la media. La edad promedio de los datos en el pronóstico de suavización exponencial simple es de 1/945 en relación con el período para el cual se calcula la predicción. (Esto no se supone que sea obvio, pero se puede demostrar fácilmente mediante la evaluación de una serie infinita.) Por lo tanto, el pronóstico promedio móvil simple tiende a quedar rezagado detrás de puntos de inflexión en aproximadamente 1/945 períodos. Por ejemplo, cuando 945 0.5 el retraso es 2 períodos cuando 945 0.2 el retraso es 5 períodos cuando 945 0.1 el retraso es 10 períodos, y así sucesivamente. Para una edad promedio dada (es decir, la cantidad de retraso), el simple suavizado exponencial (SES) pronosticado es algo superior a la predicción del promedio móvil simple (SMA), ya que coloca relativamente más peso en la observación más reciente - ie. Es un poco más sensible a los cambios ocurridos en el pasado reciente. Por ejemplo, un modelo SMA con 9 términos y un modelo SES con 945 0.2 tienen una edad promedio de 5 para los datos de sus pronósticos, pero el modelo SES pone más peso en los 3 últimos valores que el modelo SMA y en el modelo SMA. Otra ventaja importante del modelo SES sobre el modelo SMA es que el modelo SES utiliza un parámetro de suavizado que es continuamente variable, por lo que puede optimizarse fácilmente Utilizando un algoritmo quotsolverquot para minimizar el error cuadrático medio. El valor óptimo de 945 en el modelo SES de esta serie resulta ser 0.2961, como se muestra aquí: La edad promedio de los datos de esta previsión es de 1 / 0,2961 3,4 períodos, que es similar a la de un movimiento simple de 6 términos promedio. Los pronósticos a largo plazo del modelo SES son una línea recta horizontal. Como en el modelo SMA y el modelo de caminata aleatoria sin crecimiento. Sin embargo, tenga en cuenta que los intervalos de confianza calculados por Statgraphics ahora divergen de manera razonable y que son sustancialmente más estrechos que los intervalos de confianza para el modelo de caminata aleatoria. El modelo SES asume que la serie es algo más predecible que el modelo de caminata aleatoria. Un modelo SES es en realidad un caso especial de un modelo ARIMA. Por lo que la teoría estadística de los modelos ARIMA proporciona una base sólida para el cálculo de los intervalos de confianza para el modelo SES. En particular, un modelo SES es un modelo ARIMA con una diferencia no estacional, un término MA (1) y ningún término constante. Conocido también como modelo quotARIMA (0,1,1) sin constantequot. El coeficiente MA (1) en el modelo ARIMA corresponde a la cantidad 1-945 en el modelo SES. Por ejemplo, si se ajusta un modelo ARIMA (0,1,1) sin constante a la serie analizada aquí, el coeficiente MA estimado (1) resulta ser 0.7029, que es casi exactamente un menos 0.2961. Es posible añadir la suposición de una tendencia lineal constante no nula a un modelo SES. Para ello, basta con especificar un modelo ARIMA con una diferencia no estacional y un término MA (1) con una constante, es decir, un modelo ARIMA (0,1,1) con constante. Las previsiones a largo plazo tendrán entonces una tendencia que es igual a la tendencia media observada durante todo el período de estimación. No puede hacerlo junto con el ajuste estacional, ya que las opciones de ajuste estacional están deshabilitadas cuando el tipo de modelo está ajustado a ARIMA. Sin embargo, puede agregar una tendencia exponencial a largo plazo constante a un modelo de suavizado exponencial simple (con o sin ajuste estacional) utilizando la opción de ajuste de inflación en el procedimiento de Pronóstico. La tasa apropiada de inflación (crecimiento porcentual) por período puede estimarse como el coeficiente de pendiente en un modelo de tendencia lineal ajustado a los datos en conjunción con una transformación de logaritmo natural o puede basarse en otra información independiente sobre las perspectivas de crecimiento a largo plazo . (Regreso al inicio de la página.) Browns Linear (es decir, doble) Suavizado exponencial Los modelos SMA y SES suponen que no hay ninguna tendencia de ningún tipo en los datos (que normalmente está bien o al menos no es demasiado malo para 1- Avance anticipado cuando los datos son relativamente ruidosos), y se pueden modificar para incorporar una tendencia lineal constante como se muestra arriba. ¿Qué pasa con las tendencias a corto plazo? Si una serie muestra una tasa de crecimiento variable o un patrón cíclico que se destaca claramente contra el ruido, y si hay una necesidad de pronosticar más de un período, la estimación de una tendencia local también podría ser un problema. El modelo de suavizado exponencial simple puede ser generalizado para obtener un modelo lineal de suavizado exponencial (LES) que calcula las estimaciones locales de nivel y tendencia. El modelo de tendencia más simple que varía en función del tiempo es el modelo lineal de suavizado exponencial de Browns, el cual utiliza dos series suavizadas diferentes que están centradas en diferentes momentos del tiempo. La fórmula de predicción se basa en una extrapolación de una línea a través de los dos centros. (Una versión más sofisticada de este modelo, Holt8217s, se discute a continuación). La forma algebraica del modelo de suavizado exponencial lineal de Brown8217s, como la del modelo de suavizado exponencial simple, puede expresarse en varias formas diferentes pero equivalentes. La forma estándar de este modelo se expresa usualmente de la siguiente manera: Sea S la serie de suavizado simple obtenida aplicando el suavizado exponencial simple a la serie Y. Es decir, el valor de S en el periodo t está dado por: (Recuérdese que, Exponencial, esto sería la previsión para Y en el período t1). Entonces, vamos a Squot denotar la serie doblemente suavizada obtenida aplicando el suavizado exponencial simple (usando el mismo 945) a la serie S: Finalmente, la previsión para Y tk. Para cualquier kgt1, viene dado por: Esto produce e 1 0 (es decir, trucar un poco y dejar que el primer pronóstico sea igual a la primera observación real), y e 2 Y 2 8211 Y 1. Después de lo cual las previsiones se generan usando la ecuación anterior. Esto produce los mismos valores ajustados que la fórmula basada en S y S si estos últimos se iniciaron usando S 1 S 1 Y 1. Esta versión del modelo se utiliza en la página siguiente que ilustra una combinación de suavizado exponencial con ajuste estacional. Holt8217s Linear Exponential Smoothing Brown8217s El modelo LES calcula las estimaciones locales de nivel y tendencia al suavizar los datos recientes, pero el hecho de que lo haga con un solo parámetro de suavizado impone una restricción en los patrones de datos que puede encajar: el nivel y la tendencia No se les permite variar a tasas independientes. El modelo LES de Holt8217s aborda este problema incluyendo dos constantes de suavizado, una para el nivel y otra para la tendencia. En cualquier momento t, como en el modelo Brown8217s, existe una estimación L t del nivel local y una estimación T t de la tendencia local. Aquí se calculan recursivamente a partir del valor de Y observado en el instante t y de las estimaciones previas del nivel y de la tendencia por dos ecuaciones que les aplican el suavizado exponencial separadamente. Si el nivel estimado y la tendencia en el tiempo t-1 son L t82091 y T t-1. Respectivamente, entonces la previsión de Y tshy que habría sido hecha en el tiempo t-1 es igual a L t-1 T t-1. Cuando se observa el valor real, la estimación actualizada del nivel se calcula recursivamente interpolando entre Y tshy y su pronóstico, L t-1 T t-1, utilizando pesos de 945 y 1-945. El cambio en el nivel estimado, Es decir L t 8209 L t82091. Puede interpretarse como una medida ruidosa de la tendencia en el tiempo t. La estimación actualizada de la tendencia se calcula recursivamente mediante la interpolación entre L t 8209 L t82091 y la estimación anterior de la tendencia, T t-1. Utilizando pesos de 946 y 1-946: La interpretación de la constante de suavizado de tendencia 946 es análoga a la de la constante de suavizado de nivel 945. Los modelos con valores pequeños de 946 asumen que la tendencia cambia muy lentamente con el tiempo, mientras que los modelos con 946 más grandes suponen que está cambiando más rápidamente. Un modelo con una gran 946 cree que el futuro lejano es muy incierto, porque los errores en la estimación de la tendencia son muy importantes cuando se pronostica más de un período por delante. Las constantes de suavizado 945 y 946 se pueden estimar de la manera habitual minimizando el error cuadrático medio de los pronósticos de 1 paso adelante. Cuando esto se hace en Statgraphics, las estimaciones resultan ser 945 0,3048 y 946 0,008. El valor muy pequeño de 946 significa que el modelo supone muy poco cambio en la tendencia de un período al siguiente, por lo que básicamente este modelo está tratando de estimar una tendencia a largo plazo. Por analogía con la noción de la edad media de los datos que se utilizan para estimar el nivel local de la serie, la edad media de los datos que se utilizan para estimar la tendencia local es proporcional a 1/946, aunque no exactamente igual a eso. En este caso, resulta ser 1 / 0.006 125. Esto no es un número muy preciso en la medida en que la precisión de la estimación de 946 es realmente de 3 decimales, pero es del mismo orden general de magnitud que el tamaño de la muestra de 100 , Por lo que este modelo está promediando bastante historia en la estimación de la tendencia. La gráfica de pronóstico siguiente muestra que el modelo LES calcula una tendencia local ligeramente mayor al final de la serie que la tendencia constante estimada en el modelo SEStrend. Además, el valor estimado de 945 es casi idéntico al obtenido ajustando el modelo SES con o sin tendencia, por lo que este es casi el mismo modelo. Ahora, ¿se ven como pronósticos razonables para un modelo que se supone que está estimando una tendencia local? Si observa esta gráfica, parece que la tendencia local se ha vuelto hacia abajo al final de la serie. Lo que ha ocurrido Los parámetros de este modelo Se han estimado minimizando el error al cuadrado de las previsiones de un paso adelante, y no las previsiones a largo plazo, en cuyo caso la tendencia no hace mucha diferencia. Si todo lo que usted está mirando son errores de un paso adelante, no está viendo la imagen más grande de las tendencias sobre (digamos) 10 o 20 períodos. Con el fin de obtener este modelo más en sintonía con nuestra extrapolación ocular de los datos, podemos ajustar manualmente la constante de tendencia de suavizado para que utiliza una base más corta para la estimación de tendencia. Por ejemplo, si elegimos establecer 946 0.1, la edad promedio de los datos utilizados para estimar la tendencia local es de 10 períodos, lo que significa que estamos promediando la tendencia en los últimos 20 períodos aproximadamente. Here8217s lo que el pronóstico gráfico parece si fijamos 946 0.1 mientras que mantener 945 0.3. Esto parece intuitivamente razonable para esta serie, aunque probablemente sea peligroso extrapolar esta tendencia en más de 10 periodos en el futuro. ¿Qué pasa con las estadísticas de errores? Aquí hay una comparación de modelos para los dos modelos mostrados arriba, así como tres modelos SES. El valor óptimo de 945 para el modelo SES es de aproximadamente 0,3, pero se obtienen resultados similares (con un poco más o menos de capacidad de respuesta, respectivamente) con 0,5 y 0,2. (A) Holts lineal exp. Alisamiento con alfa 0.3048 y beta 0.008 (B) Holts linear exp. Alisamiento con alfa 0.3 y beta 0.1 (C) Alisamiento exponencial simple con alfa 0.5 (D) Alisamiento exponencial simple con alfa 0.3 (E) Suavizado exponencial simple con alfa 0.2 Sus estadísticas son casi idénticas, por lo que realmente no podemos hacer la elección sobre la base De errores de pronóstico de un paso adelante en la muestra de datos. Tenemos que recurrir a otras consideraciones. Si creemos firmemente que tiene sentido basar la estimación de tendencia actual en lo que ha ocurrido durante los últimos 20 períodos, podemos hacer un caso para el modelo LES con 945 0.3 y 946 0.1. Si queremos ser agnósticos acerca de si hay una tendencia local, entonces uno de los modelos SES podría ser más fácil de explicar y también daría más pronósticos intermedios para los próximos 5 o 10 períodos. (Volver al principio de la página.) Qué tipo de tendencia-extrapolación es la mejor: horizontal o lineal La evidencia empírica sugiere que, si los datos ya han sido ajustados (si es necesario) para la inflación, puede ser imprudente extrapolar lineal a corto plazo Tendencias en el futuro. Las tendencias evidentes hoy en día pueden desacelerarse en el futuro debido a diversas causas, como la obsolescencia de los productos, el aumento de la competencia y las caídas o repuntes cíclicos en una industria. Por esta razón, el suavizado exponencial simple a menudo realiza mejor fuera de la muestra de lo que de otra manera se podría esperar, a pesar de su extrapolación de tendencia horizontal de extracción horizontal. Las modificaciones de tendencia amortiguadas del modelo de suavizado exponencial lineal también se usan a menudo en la práctica para introducir una nota de conservadurismo en sus proyecciones de tendencia. El modelo LES con tendencia amortiguada se puede implementar como un caso especial de un modelo ARIMA, en particular, un modelo ARIMA (1,1,2). Es posible calcular intervalos de confianza en torno a los pronósticos a largo plazo producidos por modelos de suavizado exponencial, al considerarlos como casos especiales de modelos ARIMA. El ancho de los intervalos de confianza depende de (i) el error RMS del modelo, (ii) el tipo de suavizado (simple o lineal) (iii) el valor (S) de la (s) constante (s) de suavizado y (iv) el número de periodos por delante que está pronosticando. En general, los intervalos se extienden más rápido a medida que el 945 se hace más grande en el modelo SES y se extienden mucho más rápido cuando se usa lineal en lugar de simple suavizado. Este tema se discute más adelante en la sección de modelos de ARIMA de las notas. Problemas con el uso de la media móvil simple como herramienta de pronóstico: El promedio móvil es el seguimiento de los datos reales, pero siempre se queda por detrás de ella. El promedio móvil nunca alcanzará los picos o los valles de los datos reales. Esto suaviza los datos. No te dice mucho sobre el futuro. Sin embargo, esto no hace que el promedio móvil sea inútil. Sólo necesitas estar al tanto de sus problemas. Por lo tanto, para resumir, para un promedio móvil simple o un solo promedio móvil, hemos visto algunos problemas con el uso de la media móvil simple como una herramienta de pronóstico. El promedio móvil es el seguimiento de los datos reales, pero siempre se está quedando atrás. El promedio móvil nunca alcanzará los picos o valles de los datos reales, sino que suaviza los datos, y realmente no te dice mucho sobre el futuro, porque simplemente se pronostica un período de antelación, y se supone que ese pronóstico representa lo mejor Valor para el período futuro, un período de antelación, pero no te dice mucho más allá de eso. Eso no hace que el simple promedio móvil useless151 en realidad se ven simples promedios móviles
No comments:
Post a Comment