Thursday, 2 November 2017

Procesamiento De Señales Digitales De Sistema De Media Móvil


El científico y los ingenieros Guía para el procesamiento de señales digitales Por Steven W. Smith, Ph. D. En un mundo perfecto, los diseñadores de filtros sólo tendrían que ocuparse de la información codificada en el dominio del tiempo o en el dominio de la frecuencia, pero nunca una mezcla de los dos en la misma señal. Desafortunadamente, hay algunas aplicaciones donde ambos dominios son simultáneamente importantes. Por ejemplo, las señales de televisión caen en esta categoría desagradable. La información de vídeo se codifica en el dominio de tiempo, es decir, la forma de la forma de onda corresponde a los patrones de brillo en la imagen. Sin embargo, durante la transmisión, la señal de vídeo se trata según su composición de frecuencia, tal como su anchura de banda total, cómo se añaden las ondas portadoras para el sonido y el color del amplificador, restauración de amplificación de eliminación del componente de CC, etc. Se entiende mejor en el dominio de la frecuencia, incluso si la información de las señales está codificada en el dominio del tiempo. Por ejemplo, el monitor de temperatura en un experimento científico podría estar contaminado con 60 hercios de las líneas eléctricas, 30 kHz de una fuente de alimentación de conmutación, o 1320 kHz de una emisora ​​local de radio AM. Los familiares del filtro de media móvil tienen un mejor rendimiento en el dominio de la frecuencia, y pueden ser útiles en estas aplicaciones de dominio mixto. Los filtros de media móvil de paso múltiple implican pasar la señal de entrada a través de un filtro de media móvil dos o más veces. La figura 15-3a muestra el núcleo del filtro resultante de una, dos y cuatro pasadas. Dos pasadas son equivalentes a usar un núcleo de filtro triangular (un núcleo de filtro rectangular convolucionado con sí mismo). Después de cuatro o más pases, el kernel de filtro equivalente parece un Gaussiano (recuerde el Teorema del Límite Central). Como se muestra en (b), múltiples pasadas producen una respuesta de paso en forma de s, en comparación con la línea recta de la única pasada. Las respuestas de frecuencia en (c) y (d) están dadas por la Ec. 15-2 multiplicado por sí mismo para cada pase. Es decir, cada vez que la convolución del dominio da como resultado una multiplicación de los espectros de frecuencia. La figura 15-4 muestra la respuesta en frecuencia de otros dos familiares del filtro de media móvil. Cuando un Gaussiano puro es usado como un núcleo de filtro, la respuesta de frecuencia es también Gaussiana, como se discutió en el Capítulo 11. El Gaussiano es importante porque es la respuesta de impulso de muchos sistemas naturales y artificiales. Por ejemplo, un breve impulso de luz que entra en una línea de transmisión de fibra óptica larga saldrá como un pulso gaussiano, debido a las diferentes trayectorias tomadas por los fotones dentro de la fibra. El kernel de filtro gaussiano también se utiliza ampliamente en el procesamiento de imágenes porque tiene propiedades únicas que permiten convoluciones bidimensionales rápidas (véase el Capítulo 24). La segunda respuesta de frecuencia en la Fig. 15-4 corresponde a usar una ventana de Blackman como un núcleo de filtro. (El término ventana no tiene significado aquí es simplemente parte del nombre aceptado de esta curva). La forma exacta de la ventana de Blackman se da en el Capítulo 16 (Ec. 16-2, Fig. 16-2) sin embargo, se parece mucho a un Gaussiano. ¿Cómo son estos parientes del filtro de media móvil mejor que el filtro de media móvil en sí Tres maneras: En primer lugar, y lo más importante, estos filtros tienen mejor atenuación de banda de detención que el filtro de media móvil. En segundo lugar, los granos de filtro se estrechan hasta una amplitud más pequeña cerca de los extremos. Recuerde que cada punto en la señal de salida es una suma ponderada de un grupo de muestras de la entrada. Si el núcleo del filtro se estrecha, las muestras en la señal de entrada que están más alejadas reciben menos peso que las cercanas. En tercer lugar, las respuestas de paso son curvas suaves, en lugar de la línea recta brusca de la media móvil. Estos últimos dos son generalmente de beneficio limitado, aunque usted puede ser que encuentre aplicaciones donde son ventajas genuinas. El filtro de media móvil y sus familiares son todos aproximadamente iguales en la reducción del ruido aleatorio mientras que mantiene una respuesta aguda del paso. La ambigüedad radica en cómo se mide el tiempo de subida de la respuesta escalonada. Si el tiempo de subida se mide de 0 a 100 del paso, el filtro de media móvil es lo mejor que puede hacer, como se mostró anteriormente. En comparación, medir el tiempo de subida de 10 a 90 hace que la ventana de Blackman sea mejor que el filtro de media móvil. El punto es, esto es sólo disputas teóricas considerar estos filtros iguales en este parámetro. La mayor diferencia en estos filtros es la velocidad de ejecución. Utilizando un algoritmo recursivo (descrito a continuación), el filtro de media móvil funcionará como un rayo en su computadora. De hecho, es el filtro digital más rápido disponible. Múltiples pases del promedio móvil serán correspondientemente más lentos, pero aún así muy rápidos. En comparación, los filtros Gaussiano y Blackman son extremadamente lentos, porque deben usar convolución. Piense un factor de diez veces el número de puntos en el núcleo del filtro (basado en la multiplicación es aproximadamente 10 veces más lento que la adición). Por ejemplo, espere que un Gaussiano de 100 puntos sea 1000 veces más lento que un promedio móvil usando la recursión. Filtro promedio de movimiento (filtro MA) Loading. El filtro de media móvil es un simple filtro FIR de paso bajo (respuesta de impulso finito) comúnmente utilizado para suavizar una matriz de datos / señal muestreados. Se toman M muestras de entrada a la vez y tomar el promedio de esas M-muestras y produce un solo punto de salida. Se trata de una simple LPF (Low Pass Filter) estructura que viene práctico para los científicos y los ingenieros para filtrar el componente ruidoso no deseado de los datos previstos. A medida que aumenta la longitud del filtro (el parámetro M) aumenta la suavidad de la salida, mientras que las transiciones bruscas en los datos se hacen cada vez más contundentes. Esto implica que este filtro tiene excelente respuesta en el dominio del tiempo pero una respuesta de frecuencia pobre. El filtro MA realiza tres funciones importantes: 1) toma M puntos de entrada, calcula el promedio de esos puntos M y produce un único punto de salida. 2) Debido al cálculo / cálculos involucrados. El filtro introduce una cantidad definida de retardo 3) El filtro actúa como un filtro de paso bajo (con una respuesta de dominio de frecuencia pobre y una buena respuesta de dominio de tiempo). Código Matlab: El siguiente código matlab simula la respuesta en el dominio del tiempo de un filtro M-point Moving Average y también traza la respuesta de frecuencia para varias longitudes de filtro. Respuesta de Dominio de Tiempo: En la primera trama, tenemos la entrada que va en el filtro de media móvil. La entrada es ruidosa y nuestro objetivo es reducir el ruido. La siguiente figura es la respuesta de salida de un filtro de media móvil de 3 puntos. Puede deducirse de la figura que el filtro de media móvil de 3 puntos no ha hecho mucho en filtrar el ruido. Aumentamos los grifos de filtro a 51 puntos y podemos ver que el ruido en la salida se ha reducido mucho, que se representa en la siguiente figura. Aumentamos los grifos más allá de 101 y 501 y podemos observar que aunque el ruido sea casi cero, las transiciones se atenuan drásticamente (observe la pendiente en cada lado de la señal y compárelas con la transición ideal de pared de ladrillo en Nuestra entrada). Respuesta de Frecuencia: A partir de la respuesta de frecuencia se puede afirmar que el roll-off es muy lento y la atenuación de banda de parada no es buena. Dada esta atenuación de banda de parada, claramente, el filtro de media móvil no puede separar una banda de frecuencias de otra. Como sabemos que un buen rendimiento en el dominio del tiempo da como resultado un rendimiento pobre en el dominio de la frecuencia, y viceversa. En resumen, el promedio móvil es un filtro de suavizado excepcionalmente bueno (la acción en el dominio del tiempo), pero un filtro de paso bajo excepcionalmente malo (la acción en el dominio de la frecuencia) Enlaces externos: Libros recomendados: Sidebar principalDocumentación Este ejemplo muestra cómo Utilizar filtros de media móvil y remuestreo para aislar el efecto de los componentes periódicos de la hora del día sobre las lecturas de temperatura por hora, así como eliminar el ruido de línea no deseado de una medición de voltaje en bucle abierto. El ejemplo también muestra cómo suavizar los niveles de una señal de reloj mientras se conservan los bordes usando un filtro mediano. El ejemplo también muestra cómo usar un filtro Hampel para eliminar grandes valores atípicos. Motivación El suavizado es cómo descubrimos patrones importantes en nuestros datos sin dejar de lado cosas que no son importantes (es decir, ruido). Utilizamos filtrado para realizar este suavizado. El objetivo de suavizar es producir cambios lentos en el valor de modo que sea más fácil ver tendencias en nuestros datos. A veces, cuando se examinan datos de entrada, es posible que desee suavizar los datos para ver una tendencia en la señal. En nuestro ejemplo tenemos un conjunto de lecturas de temperatura en Celsius tomadas cada hora en el Aeropuerto de Logan durante todo el mes de enero de 2011. Tenga en cuenta que podemos ver visualmente el efecto que tiene la hora del día sobre las lecturas de temperatura. Si sólo está interesado en la variación diaria de la temperatura durante el mes, las fluctuaciones horarias sólo contribuyen al ruido, lo que puede hacer que las variaciones diarias sean difíciles de discernir. Para eliminar el efecto de la hora del día, ahora queremos suavizar nuestros datos utilizando un filtro de media móvil. Un filtro de media móvil En su forma más simple, un filtro de media móvil de longitud N toma el promedio de cada N muestras consecutivas de la forma de onda. Para aplicar un filtro de media móvil a cada punto de datos, construimos nuestros coeficientes de nuestro filtro para que cada punto sea igualmente ponderado y aporte 1/24 a la media total. Esto nos da la temperatura promedio en cada período de 24 horas. Filter Delay Observe que la salida filtrada se retrasa aproximadamente doce horas. Esto se debe al hecho de que nuestro filtro de media móvil tiene un retraso. Cualquier filtro simétrico de longitud N tendrá un retardo de (N-1) / 2 muestras. Podemos dar cuenta de este retraso manualmente. Extracción de las diferencias promedio Alternativamente, también podemos usar el filtro del promedio móvil para obtener una mejor estimación de cómo el tiempo del día afecta la temperatura total. Para ello, primero, restar los datos suavizados de las mediciones de temperatura por hora. A continuación, segmentar los datos diferenciados en días y tomar el promedio durante los 31 días del mes. Extracción de la envolvente de pico A veces también nos gustaría tener una estimación que varía suavemente de cómo los altos y bajos de nuestra señal de temperatura cambian diariamente. Para ello, podemos usar la función de envolvente para conectar los máximos y mínimos extremos detectados en un subconjunto del período de 24 horas. En este ejemplo, aseguramos que haya al menos 16 horas entre cada extremo alto y extremo bajo. También podemos tener una idea de cómo los máximos y bajos son tendencia tomando el promedio entre los dos extremos. Filtros de Promedio Móvil Ponderado Otros tipos de filtros de media móvil no ponderan igualmente cada muestra. Otro filtro común sigue la expansión binomial de (1 / 2,1 / 2) n Este tipo de filtro se aproxima a una curva normal para valores grandes de n. Es útil para filtrar el ruido de alta frecuencia para n pequeños. Para encontrar los coeficientes para el filtro binomial, convolucione 1/2 1/2 con sí mismo y convierta iterativamente la salida con 1/2 1/2 un número prescrito de veces. En este ejemplo, utilice cinco iteraciones totales. Otro filtro algo similar al filtro de expansión gaussiano es el filtro de media móvil exponencial. Este tipo de filtro de promedio móvil ponderado es fácil de construir y no requiere un tamaño de ventana grande. Ajusta un filtro de media móvil ponderado exponencialmente por un parámetro alfa entre cero y uno. Un valor más alto de alfa tendrá menos suavizado. Amplíe las lecturas durante un día. Selecciona tu pais

No comments:

Post a Comment