3 Aplicaciones básicas de los promedios móviles Como comerciantes cuantitativos, diseñamos nuestras estrategias para tomar decisiones comerciales basadas en ciertas señales. Estas señales pueden ser tan simples o tan complejas como deseamos. Uno de los tipos más básicos de señales que implementará una estrategia cuantitativa es un promedio móvil. Si bien estas señales son fáciles de entender y ampliamente utilizado, es sorprendente lo efectivas que pueden ser. Ya sea que los utilice como señales comerciales, filtros de tendencia o como partes de otros indicadores, los promedios móviles son una parte esencial del comercio cuantitativo. Un reciente post sobre Forex Crunch discutió tres maneras de usar las medias móviles para generar señales comerciales. Aunque ninguno de estos métodos es nuevo para nosotros, el puesto nos proporcionó un buen recordatorio de que hay varias maneras de implementar un promedio móvil en nuestras estrategias comerciales. Cada método tiene un objetivo diferente, pero todos ellos pueden contribuir a un sistema de comercio rentable. Señales de entrada / salida de cruce Esta es la forma más común de utilizar los promedios móviles. Hemos cubierto un montón de estrategias que utilizan el promedio móvil para determinar cuándo entrar o salir de un comercio. Esta es la base de muchas estrategias de seguimiento de tendencias. El concepto básico es que cuando un promedio móvil más rápido cruza por encima de un promedio móvil más lento, una tendencia alcista ha comenzado y la estrategia debe tomar posiciones largas. Entonces, cuando el promedio móvil más rápido cruza detrás de la media móvil más lenta, la tendencia alcista ha terminado y la estrategia debe salir de su posición y posiblemente establecer una posición corta. Una evolución de esta estrategia es incluir una tercera media móvil entre los promedios móviles rápidos y lentos. Esta media móvil media permitirá que su estrategia para salir más rápido, esperemos que la prevención de devolver los beneficios. Filtros de tendencia Otra aplicación popular de las medias móviles es utilizar un promedio móvil a largo plazo como filtro de tendencia para una estrategia que utiliza otros criterios para entradas y salidas. Esto puede verse con bastante frecuencia en las estrategias de reversión media desarrolladas por Larry Connors y Cesar Alvarez. Un ejemplo simple de esto sería un sistema de reversión medio que sólo quiere intercambiar saltos a corto plazo en medio de una tendencia alcista a largo plazo. La estrategia podría utilizar una media móvil de 200 días para determinar la tendencia general. Entonces, si la tendencia general es hacia arriba, podría utilizar un indicador diferente, como RSI, para identificar las condiciones de sobreventa a corto plazo. Suavizar otros indicadores Las medias móviles también se utilizan en muchos indicadores diferentes para suavizar las señales de datos. El promedio de las señales que un indicador produce permite a un comerciante para eliminar parte del ruido para obtener una imagen más clara de lo que realmente está sucediendo en un mercado. Dos grandes ejemplos de otros indicadores que utilizan promedios móviles son el Oscilador Estocástico y el Indicador MACD. El oscilador estocástico utiliza la línea K, que es simplemente una media móvil de la línea D, como una señal de entrada / salida. El indicador MACD se basa en realidad completamente en las medias móviles. Como ejemplo de SMA, considere un valor con los siguientes precios de cierre en 15 días: Semana 1 (5 días) 20, 22, 24, 25, 23 Semana 2 (5) Días) 26, 28, 26, 29, 27 Semana 3 (5 días) 28, 30, 27, 29, 28 Un MA de 10 días promediaría los precios de cierre de los primeros 10 días como el primer punto de datos. El próximo punto de datos bajaría el precio más temprano, agregaría el precio el día 11 y tomaría el promedio, y así sucesivamente como se muestra a continuación. Como se mencionó anteriormente, las AMs se retrasan en la acción de los precios actuales porque se basan en precios pasados, mientras más largo sea el período de tiempo para la MA, mayor será el retraso. Así, un MA de 200 días tendrá un grado mucho mayor de retraso que un MA de 20 días porque contiene precios durante los últimos 200 días. La longitud de la MA a utilizar depende de los objetivos de negociación, con MA más cortos utilizados para el comercio a corto plazo y más largo plazo MA más adecuado para los inversores a largo plazo. El MA de 200 días es ampliamente seguido por inversores y comerciantes, con rupturas por encima y por debajo de este promedio móvil considerado como señales comerciales importantes. Las MA también imparten señales comerciales importantes por sí solas, o cuando dos medias se cruzan. Un aumento MA indica que la seguridad está en una tendencia alcista. Mientras que un MA decreciente indica que está en una tendencia bajista. Del mismo modo, el impulso ascendente se confirma con un cruce alcista. Que se produce cuando una MA a corto plazo cruza por encima de un MA a más largo plazo. El impulso descendente se confirma con un cruce bajista, que ocurre cuando un MA a corto plazo cruza por debajo de un MA. A de más largo plazo. Una mirada más cercana al algoritmo avanzado de media móvil CODAS La media móvil versátil en el algoritmo CODAS avanzado filtra el ruido de la forma de onda, Elimina la deriva de la línea de base. El promedio móvil es una técnica matemática simple usada principalmente para eliminar aberraciones y revelar la tendencia real en una colección de puntos de datos. Usted puede estar familiarizado con él de promediar datos ruidosos en un experimento de física de primer año, o de seguir el valor de una inversión. Es posible que no sepa que el promedio móvil es también un prototipo del filtro de respuesta al impulso finito, el tipo más común de filtro utilizado en la instrumentación basada en computadoras. En los casos en que una forma de onda dada está llena de ruido, donde se necesita extraer una media de una señal periódica, o cuando se necesita eliminar una línea de base lentamente a una señal de frecuencia más alta, se puede aplicar un filtro de media móvil para lograr la deseada resultado. El algoritmo de media móvil de Advanced CODAS ofrece este tipo de rendimiento de filtrado de formas de onda. Advanced CODAS es un paquete de software de análisis que opera en los archivos de datos de forma de onda existentes creados por los paquetes de adquisición de datos WinDaq o de segunda generación de WinDaq de primera generación. Además del algoritmo de media móvil, Advanced CODAS también incluye una utilidad de generador de informes y rutinas de software para integración de formas de onda, diferenciación, captura de pico y valle, rectificación y operaciones aritméticas. Teoría del filtro de media móvil El algoritmo de media móvil DATAQ Instruments permite una gran flexibilidad en las aplicaciones de filtrado de formas de onda. Puede utilizarse como un filtro de paso bajo para atenuar el ruido inherente a muchos tipos de formas de onda, o como un filtro de paso alto para eliminar una línea de base a la deriva a partir de una señal de frecuencia más alta. El procedimiento utilizado por el algoritmo para determinar la cantidad de filtrado implica el uso de un factor de suavizado. Este factor de suavizado, controlado por usted a través del software, se puede aumentar o disminuir para especificar el número de puntos de datos de forma de onda reales o muestras que el promedio móvil se extenderá. Cualquier forma de onda periódica puede considerarse como una cadena larga o una colección de puntos de datos. El algoritmo logra un promedio móvil tomando dos o más de estos puntos de datos de la forma de onda adquirida, sumándolos, dividiendo su suma por el número total de puntos de datos añadidos, reemplazando el primer punto de datos de la forma de onda por el promedio que se acaba de calcular y Repitiendo los pasos con los puntos de datos segundo, tercero y así sucesivamente hasta que se alcanza el final de los datos. El resultado es una segunda forma de onda generada que consta de los datos promediados y que tiene el mismo número de puntos que la forma de onda original. Figura 1 8212 Cualquier forma de onda periódica puede considerarse como una cadena larga o una colección de puntos de datos. En la ilustración anterior, los puntos de datos de forma de onda consecutivos se representan mediante quotyquot para ilustrar cómo se calcula el promedio móvil. En este caso, se aplicó un factor de suavizado de tres, lo que significa que se añaden tres puntos de datos consecutivos de la forma de onda original, su suma dividida por tres, y este cociente se representa como el primer punto de datos de una forma de onda generada. El proceso se repite con el segundo, tercer y así sucesivamente puntos de datos de la forma de onda original hasta que se alcanza el final de los datos. Una técnica quotfeatheringquot especial promedia los puntos de datos inicial y final de la forma de onda original para asegurar que la forma de onda generada contiene el mismo número de puntos de datos que el original. La figura 1 ilustra cómo se aplica el algoritmo de media móvil a los puntos de datos de forma de onda (que están representados por y). La ilustración presenta un factor de suavizado de 3, lo que significa que el valor promedio (representado por a) se calculará sobre 3 valores de datos de forma de onda consecutivos. Observe la superposición que existe en los cálculos del promedio móvil. Es esta técnica de superposición, junto con un tratamiento especial de principio y fin que genera el mismo número de puntos de datos en la forma de onda media que existía en el original. La forma en que el algoritmo calcula un promedio móvil merece una mirada más cercana y se puede ilustrar con un ejemplo. Digamos que hemos estado en una dieta durante dos semanas y queremos calcular nuestro peso promedio durante los últimos 7 días. Sumaríamos nuestro peso el día 7 con nuestro peso en los días 8, 9, 10, 11, 12 y 13 y luego multiplicaríamos por 1/7. Para formalizar el proceso, esto puede expresarse como: a (7) 1/7 (y (7) y (8) y (9) y (13)) Esta ecuación puede generalizarse más. La media móvil de una forma de onda puede calcularse mediante: Donde: un valor promediado n posición de punto de datos s factor de suavización y valor de punto de datos real Figura 2 8212 La forma de onda de salida de la celda de carga mostrada original y no filtrada en el canal superior y como punto 11 Moviendo la forma de onda promediada en el canal inferior. El ruido que aparece en la forma de onda original se debió a las intensas vibraciones creadas por la prensa durante la operación de empaquetado. La clave de esta flexibilidad de algoritmos es su amplia gama de factores de suavizado seleccionables (de 2 - 1.000). El factor de suavizado determina cuántos puntos de datos reales o muestras se promediarán. Especificar cualquier factor de suavizado positivo simula un filtro de paso bajo mientras que la especificación de un factor de suavizado negativo simula un filtro de paso alto. Dado el valor absoluto del factor de suavizado, los valores más altos aplican mayores restricciones de suavizado en la forma de onda resultante y, a la inversa, los valores inferiores aplican menos suavizado. Con la aplicación del factor de suavizado adecuado, el algoritmo también se puede utilizar para extraer el valor medio de una forma de onda periódica dada. Un factor de suavizado positivo más alto se aplica típicamente para generar valores medios de forma de onda. Aplicación del algoritmo de media móvil Una característica destacada del algoritmo de media móvil es que puede aplicarse muchas veces a la misma forma de onda si es necesario para obtener el resultado de filtrado deseado. El filtrado de formas de onda es un ejercicio muy subjetivo. Lo que puede ser una forma de onda debidamente filtrada para un usuario puede ser inaceptablemente ruidoso para otro. Sólo usted puede juzgar si el número de puntos promedio seleccionados fue demasiado alto, demasiado bajo o simplemente correcto. La flexibilidad del algoritmo le permite ajustar el factor de suavizado y hacer otro paso a través del algoritmo cuando no se logran resultados satisfactorios con el intento inicial. La aplicación y las capacidades del algoritmo de media móvil se pueden ilustrar mejor mediante los siguientes ejemplos. Figura 3 8212 La forma de onda de ECG mostrada en original y no filtrada en el canal superior y como forma de onda en promedio móvil de 97 puntos en el canal inferior. Obsérvese la ausencia de deriva basal en el canal inferior. Ambas formas de onda se muestran en una condición comprimida para propósitos de presentación. Una aplicación de reducción de ruido En los casos en que una forma de onda dada está llena de ruido, el filtro de media móvil puede aplicarse para suprimir el ruido y producir una imagen más clara de la forma de onda. Por ejemplo, un cliente CODAS avanzado estaba utilizando una prensa y una celda de carga en una operación de empaquetado. Su producto debıa ser comprimido a un nivel predeterminado (controlado por la célula de carga) para reducir el tama~no del envase requerido para contener el producto. Por razones de control de calidad, decidieron monitorear la operación de la prensa con instrumentación. Un problema inesperado apareció cuando comenzaron a ver la salida de celda de carga en tiempo real. Dado que la máquina de prensa vibraba considerablemente durante el funcionamiento, la forma de onda de salida de las células de carga era difícil de discernir porque contenía una gran cantidad de ruido debido a la vibración como se muestra en el canal superior de la figura 2. Este ruido se eliminó generando un canal promedio de 11 puntos en movimiento como se muestra en el canal inferior de la Figura 2. El resultado fue una imagen mucho más clara de la salida de las células de carga. Una aplicación en la eliminación de la deriva de la línea de base En los casos en que una línea de base de derivación lentamente necesita ser eliminada de una señal de frecuencia más alta, el filtro de media móvil puede aplicarse para eliminar la línea de base de deriva. Por ejemplo, una forma de onda de ECG típicamente exhibe cierto grado de desviación de línea de base como puede verse en el canal superior de la Figura 3. Esta deriva de línea de base puede ser eliminada sin cambiar o alterar las características de la forma de onda como se muestra en el canal inferior de la Figura 3. Esto se logra aplicando un factor de suavizado de valor negativo apropiado durante el cálculo del promedio móvil. El factor de suavizado apropiado se determina dividiendo un periodo de forma de onda (en segundos) por el intervalo de muestreo de canales. El intervalo de muestreo de canales es simplemente el recíproco de la tasa de muestreo de canales y se muestra convenientemente en el menú de utilidad de media móvil. El período de la forma de onda se determina fácilmente a partir de la pantalla de visualización posicionando el cursor en un punto conveniente de la forma de onda, estableciendo un marcador de tiempo y desplazando el cursor un ciclo completo fuera del marcador de tiempo mostrado. La diferencia de tiempo entre el cursor y el marcador de tiempo es un período de forma de onda y se muestra en la parte inferior de la pantalla en segundos. En nuestro ejemplo de ECG, la forma de onda poseía un intervalo de muestra de canal de 0,004 segundos (obtenido del menú de utilidad de medio móvil) y un período de forma de onda se midió para extender 0,388 segundos. Dividiendo el período de la forma de onda por el intervalo de muestreo de los canales nos dio un factor de suavizado de 97. Puesto que es la deriva de la línea de base que estamos interesados en eliminar, aplicamos un factor de suavizado negativo (-97) al algoritmo del promedio móvil. Esto en efecto restó el resultado promedio móvil de la señal de forma de onda original, que eliminó la deriva de la línea de base sin alterar la información de la forma de onda. Cualquiera que sea la aplicación, la razón universal para aplicar un filtro de media móvil es quotsmooth outquot las aberraciones altas y bajas y revelan un valor de forma de onda intermedia más representativo. Al hacer esto, el software no debe comprometer otras características de la forma de onda original en el proceso de generar una forma de onda en movimiento promediada. Por ejemplo, el software debe ajustar automáticamente la información de calibración asociada con el archivo de datos original, de modo que la forma de onda promedio móvil esté en las unidades de ingeniería apropiadas cuando se genere. Todas las lecturas de las cifras se tomaron utilizando el software WinDaq Data Acquisition
No comments:
Post a Comment